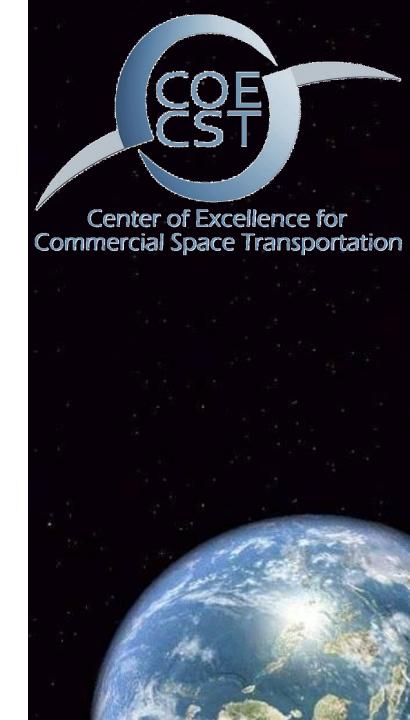
### COE CST Third Annual Technical Meeting:

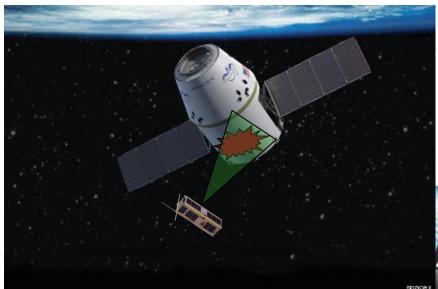
Task Area 244: AUTONOMOUS RENDEZVOUS AND DOCKING (Using nano-satellites for inspection and proximity operations)

### PI: Steve Rock Stanford University

October 30, 2013

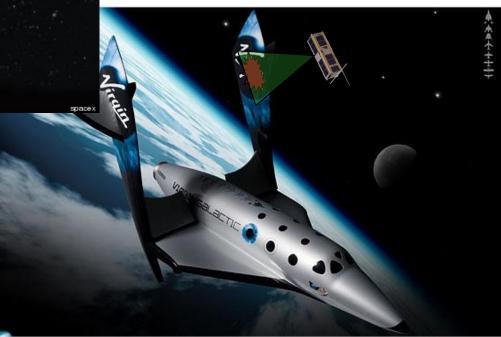


### **Motivation**



### Nanosatellite Observer for "Eye in the Sky" Inspection

### Target Potentially Undergoing Complex, Tumbling Motion

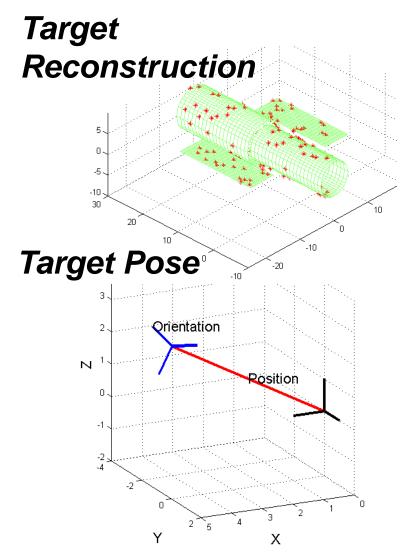


COE CST Third Annual Technical Meeting (ATM3) October 28-30, 2013



# **Statement of Purpose**

- Goal: To develop new technology for spacecraft proximity operations that is safety enabling
- Target Reconstruction and Pose Estimation
- Unstructured rendezvous situations
  - Tumbling target motion
  - No a priori information
  - Uncommunicative target
- Enable this capability on a nanosatellite observer
  - Small satellites impose sensing, size, and power constraints





### Outline

- Prior Work as of Last Technical Meeting
  - Monocular Vision and Sparse-Pattern Range Data
    - Estimation Methodology
    - Simulation Results
- Work Since Technical Meeting
  - Shift in Direction
    - Flash LIDAR and Visual Imagery scheduling for minimal power consumption
  - Hardware Testbed
    - 6-DOF relative motion simulation
  - Estimation Codebase



## **Team Members**

- Pls: Steve Rock
- Students:
  - Jose Padial, PhD Candidate
  - Andrew Smith, PhD Candidate
- Department of Aeronautics & Astronautics, Stanford University



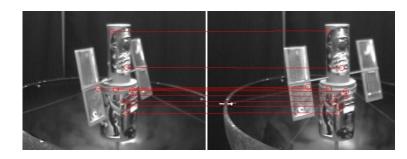
# **Prior Investigation as of Last TM**

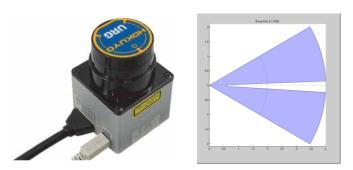
### Fusion of vision and sparse pattern range data

- Power and size drove sensor choice
  - Camera can be tiny and very low power (passive sensor)
  - There exist small line-scanning range finders with *relatively* low power consumption
- Monocular vision
  - Robust feature tracking (SIFT) provides frame-to-frame correspondence

### Sparse-pattern Range Data

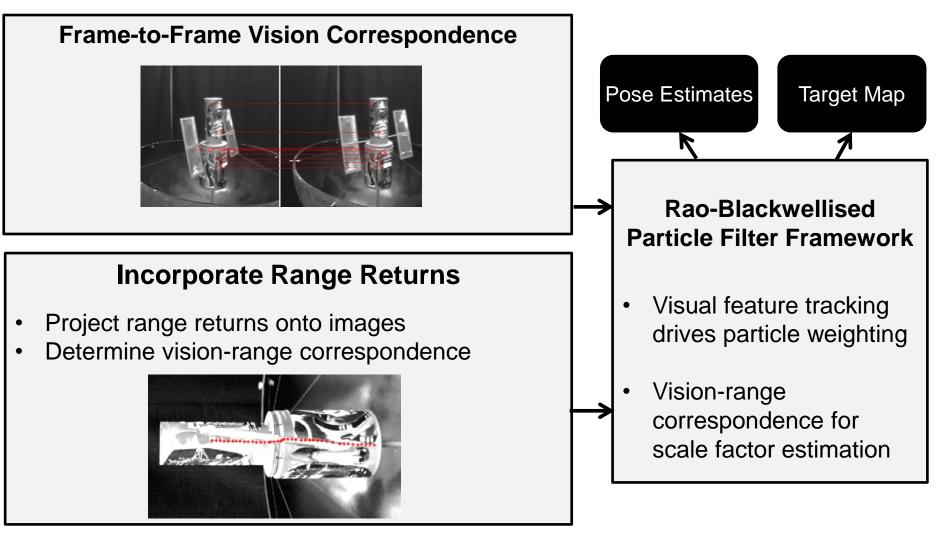
- e.g. Line-scanning Laser
- Provides 3D mapping of target geometry





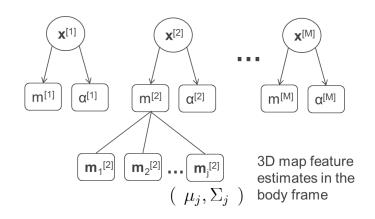


# **Algorithm Overview**





# **Algorithm Details**



Details of the algorithm in:

Padial et al, "Tumbling Target Reconstruction and Pose Estimation through Fusion of Monocular Vision and Sparse-Pattern Range Data", *IEEE MFI Conference 2012.* 

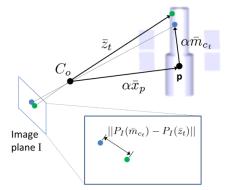
2D Vision Feature Measurements $y_i^t = \left[u_i, v_i
ight]_t^T$ 

Expected Vision Measurements

$$\hat{y}_j^{t[i]} = K(R_t^{[i]} \mu_j^{[i]} + \bar{x}_{p,t}^{[i]})$$

Particle Weighting

$$w^{[i]} = \prod_{j=1}^{N} \frac{1}{|2\pi\Sigma_{j}^{[i]}|^{0.5}} e^{-\frac{1}{2}||y_{j}^{t} - \hat{y}_{j}^{t}|^{[i]}||_{\Sigma_{j}^{[i]}}^{2}}$$



#### Vision-range Correspondence

 $\begin{aligned} \hat{c}_t &= \underset{c_t}{\operatorname{arg\,min}} \quad ||P_I(\bar{m}_{c_t}) - P_I(\bar{z}_t)|| \\ & \text{subject to} \ ||P_I(\bar{m}_{c_t}) - P_I(\bar{z}_t)|| \leq \beta \end{aligned}$ 

#### Scale Estimation System is Linear

$$\bar{z}_t = (R(\bar{\theta}_t)^{B/C} \bar{x}_{p,t} + \bar{m}_{\hat{c}_t}) \alpha_t + \bar{\delta}_z \\ \bar{\delta}_z \sim \mathcal{N}(0, \Gamma_{z_t})$$

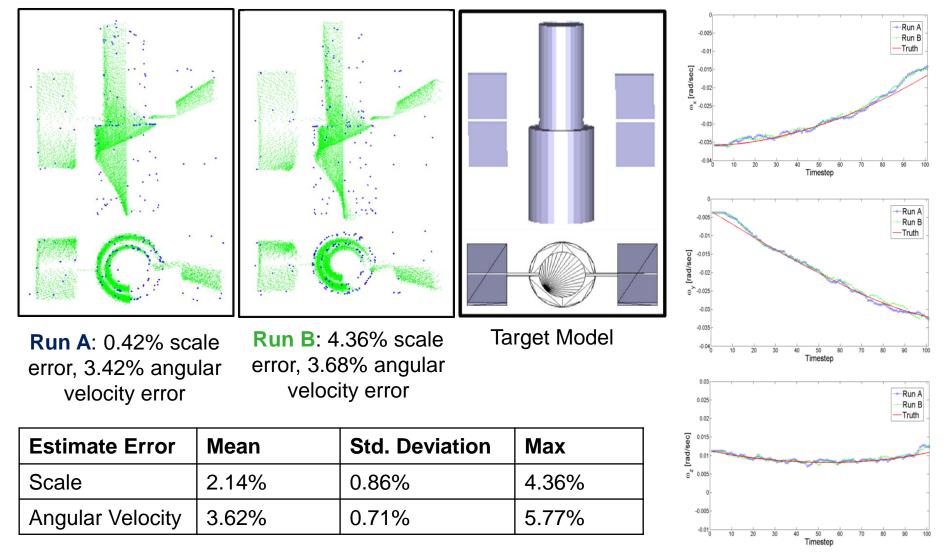
Gaussian Measurement Distribution is Linear in Scale

$$p(z_t|\alpha_t, x^t, z^{t-1}, c^t) \sim \mathcal{N}(z_t; (R(\bar{\theta}_t)^{B/C} \bar{x}_{p,t} + \bar{m}_{\hat{c}_t})\alpha_t, \ \Gamma_{z_t} + \alpha_t^2 \Sigma_{\hat{c}_t})$$

COE CST Third Annual Technical Meeting (ATM3) October 28-30, 2013



## **Simulation Results**



COE CST Third Annual Technical Meeting (ATM3) October 28-30, 2013



## Outline

- Prior Work as of Last Technical Meeting
  - Monocular Vision and Sparse-Pattern Range Data
    - Estimation Methodology
    - Simulation Results
- Work Since Technical Meeting
  - Current Direction
    - 3D Flash LIDAR and Visual Imagery scheduling for minimal power consumption
  - Hardware Testbed
    - 6-DOF relative motion simulation
  - Estimation Codebase



# **Current Investigation Direction**

### • 3D Flash LIDAR

- Flash LIDAR systems are coming down in size and power consumption
- Dense 3D data is far more rich than that obtained by line-scanning laser range finders
  - Capable of use in frame-to-frame correspondence
  - Allows for computationally less intense estimation as compared to monocular vision + line-scan range data

### Nanosatellite observer craft our goal

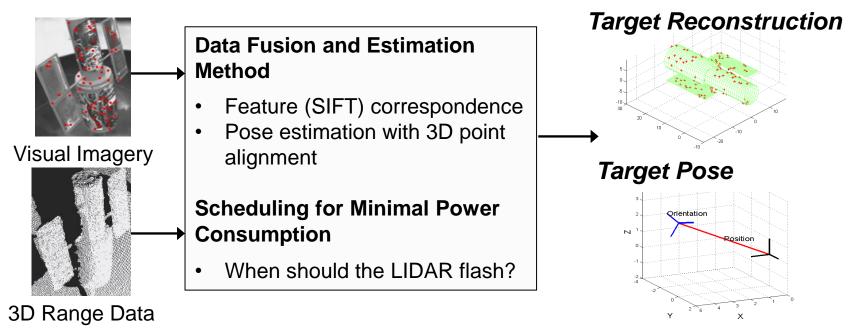
- Power consumption of the Flash LIDAR still too high
- *Potential solution*: Intelligent scheduling of "flashes" in order to minimize power consumption while maintaining estimation performance



# **Current Investigation Direction**

### **Sensor Scheduling for Minimal Power Consumption**

- Fusion of 3D Flash LIDAR and visual imagery data for pose estimation and target reconstruction
- Develop scheduling algorithms to selectively choose when to "flash" LIDAR in order to minimize power consumption while maintaining sufficient pose estimation and target reconstruction performance



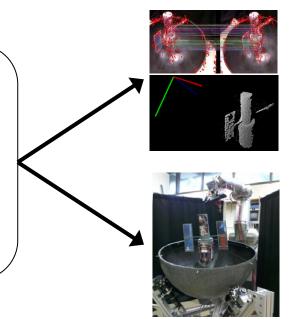


# **Current Investigation Direction**

### **Sensor Scheduling for Minimal Power Consumption**

- Fusion of 3D Flash LIDAR and visual imagery data for pose estimation and target reconstruction
- Develop scheduling algorithms to selectively choose when to "flash" LIDAR in order to minimize power consumption while maintaining sufficient pose estimation and target reconstruction performance

In order to investigate sensor scheduling need to develop baseline capabilities



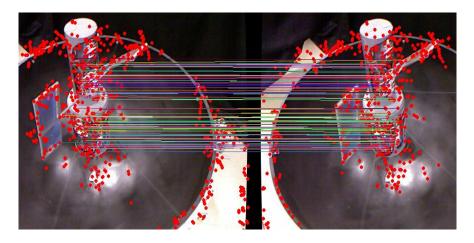
#### Estimation Algorithm

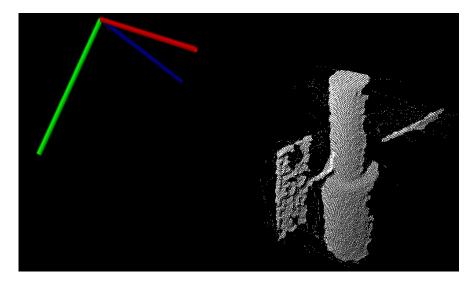
Pose estimation and target reconstruction with visual imagery and 3D range data

Hardware Testbed 6-DOF relative motion between target and observer



## **Estimation Methodology**





- Vision feature correspondence (SIFT)
  - Provides the alignment of points between 2 successive frames
- Range data provides depth for corresponding points (full 3D points)
  - Well-known Horn's method used to estimate rotation and translation of target between frames (relative to observer frame)
- Estimation is *well-behaved* compared to monocular vision case

COE CST Third Annual Technical Meeting (ATM3) October 28-30, 2013

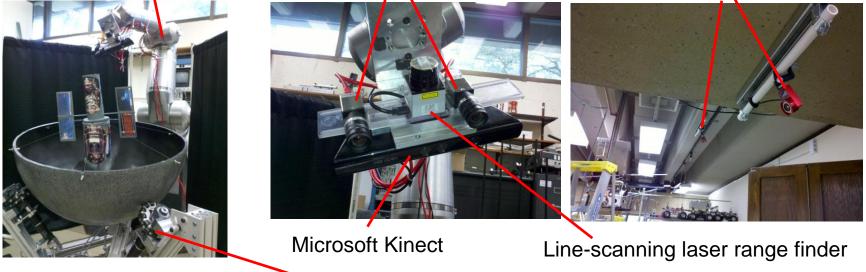


## **ARL Hardware Testbed**

R<sup>2</sup> manipulator arm

Cameras

#### Motion Capture IR Cameras

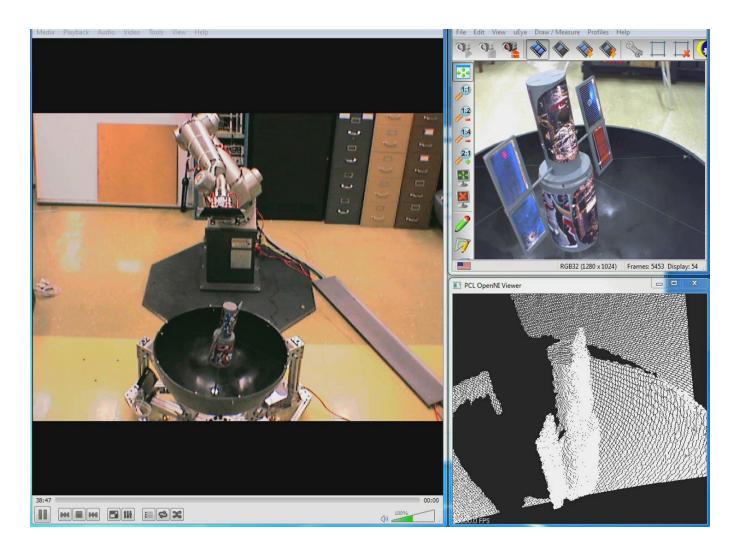


Tumbling base motion simulator

- Mounted sensors to manipulator end-effector for 6DOF relative motion
  - Microsoft Kinect as a surrogate for Flash LIDAR
- Mounted Motion Capture IR Cameras (6)
- Simulink-based manipulator and tumbling base control with synchronized camera/ranging data collection and IR truth data collection



### **ARL Hardware Testbed**



COE CST Third Annual Technical Meeting (ATM3) October 28-30, 2013

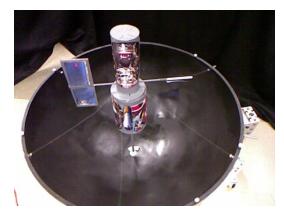


### **Pose Estimation / Reconstruction**

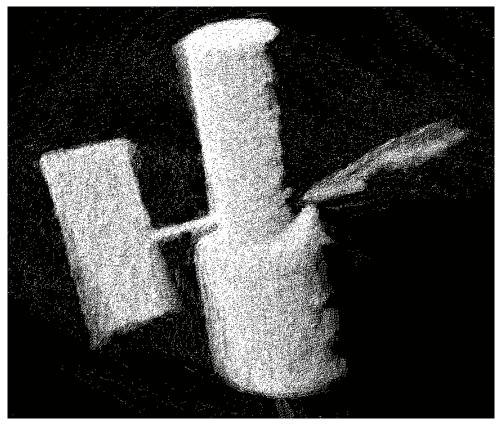
### **Target Range of Motion**



**First Frame** 



#### Reconstruction



#### Last Frame

COE CST Third Annual Technical Meeting (ATM3) October 28-30, 2013



# **Contact Information**

- Steve Rock
  - rock@stanford.edu
- Jose Padial
  - jpadial@stanford.edu

